It is thought to have occurred on Earth between 3.8 and 4.1 billion years ago, and is studied through a combination of laboratory experiments and extrapolation from the genetic information of modern organisms in order to make reasonable conjectures about what pre-life chemical reactions may have given rise to a living system.

The study of abiogenesis involves three main types of considerations: the geophysical, the chemical, and the biological, with more recent approaches attempting a synthesis of all three. Many approaches investigate how self-replicating molecules, or their components, came into existence. It is generally accepted that current life on Earth descended from an RNA world, although RNA-based life may not have been the first life to have existed. The Miller–Urey experiment and similar experiments demonstrated that most amino acids, basic chemicals of life, can be synthesized from inorganic compounds in conditions intended to be similar to early Earth. Several mechanisms of organic molecule synthesis have been investigated, including lightning and radiation. Other approaches ("metabolism first" hypotheses) focus on understanding how catalysis in chemical systems on the early Earth might have provided the precursor molecules necessary for self-replication. Complex organic molecules have been found in the Solar System and in interstellar space, and these molecules may have provided starting material for the development of life on Earth.

The panspermia hypothesis suggests that microscopic life was distributed by meteoroids, asteroids and other small Solar System bodies and that life may exist throughout the Universe. It is speculated that the biochemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the age of the universe was only 10–17 million years.[Panspermia hypothesis answers the question of whence life, not how life came to be; it only postulates the origin of life to a locale outside the Earth.

Nonetheless, Earth is the only place in the Universe known to harbor life. The age of the Earth is about 4.54 billion years. The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago, during the Eoarchean Era after a geological crust started to solidify following the earlier molten Hadean Eon. There are microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Aust According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe.

0 comments Blogger 0 Facebook

Post a Comment

 
dainik nepali khabar © 2013. All Rights Reserved. Powered by Blogger
Top